
* GVTDOC

D 211.

9:
4137

ýý%tNT Or

NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER •
Bethesda, Maryland 20034

GRAPH INFORMATION RETRIEVAL LANGUAGE;
ul
U PROGRAMMING MANUAL FOR FORTRAN COMPLEMENT
-_J

C)
0 L1BRARY

byC) A% qj 1973
,, ~S. Berkowitz, Ph.D.

* ~U.S. NAVAL ACADEMY

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

C)
0

Li

-IJ

COMPUTATION AND MATHEMATICS DEPARTMENT

RESEARCH AND DEVELOPMENT REPORT
LJ

I-
LiJ

* 0%

June 1973 Report 'ij,

Rpt1CA.

The Naval Ship Research and Development Center is a U. S. Navy center for laboratory

effort directed at achieving improved sea and air vehicles. It was formed in March 1967 by
merging the David Taylor Model Basin at Carderock, Maryland with the Marine Engineering
Laboratory at Annapolis, Maryland.

Naval Ship Research and Development Center

Bethesda, Md. 20034

MAJOR NSRDC ORGANIZATIONAL COMPONENTS

NSRDC

COMMANDER
00

*REPORT ORIGINATOR TECHNICAL DIRECTOR
01

OFFICER-IN-CHARGE OFFICER-IN-CHARGE
CARDEROCK 05ANNAPOLIS

SYSTEMS
DEVELOPMENT
DEPARTMENT I

SHIP PERFORMANCE AVIATION AND
DEPARTMENTRFRAC SURFACE EFFECTS

1 DEPARTMENT1 5DEATMN

*- I
STRUCTURES COMPUTATION

DEPARTMENT AND MATHEMATICS
17 DEPARTMENT I

SHIP ACOUSTICS PROPULSION AND

DEPARTMENT FAUXILIARY SYSTEMS

D9PARTTMT27119 DEPARTMENT

MATERIALS CENTRAL

DEPARTMENT INSTRUMENTATION1 PTN 28 DEPARTMENT S29

NDW-NSRDC 3960/44 (REV. 8/71)

GPO 917-872

0
DEPARTMENT OF THE NAVY

NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER

Bethesda, Maryland 20034

GRAPH INFORMATION RETRIEVAL LANGUAGE;

PROGRAMMING MANUAL FOR FORTRAN COMPLEMENT

by

S. Berkowitz, Ph.D.
,0

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

June 1973 Report 4137

0

TABLE OF CONTENTS

Pagie

ABSTRACT l..

ADIINISTRATIVE INFORMATION 1

I. INTRODUCTION,

II. A GRADED PROGRAM OF EXAMPLES. 5

IDENTIFIERS, FUNCTIONS 6...................6

INSERTION 7

RETRIEVAL, INDEX 8

TRANSFER 9

DELETION10

DATA, SEQUENTIAL SPACE11

INCLUSION 15

RECOGAITION AND GENERATtl...i 16

III. THE SYNTAX OF GIRL/FORTRAN. 18

THE GIRL/FORTRAN PROGRA;1 18

BLANKS . - z r..................... 19

DEFINITIONS, IDENTIFIERS 19

:JUIERIC, HOLLERITH DATA 23

TRANSFERS, LABELS, COHPARISCNS
UNPARENTHESIZED STATEMENTS

1. Identification. 25
2. Insertion 25
3. Retrieval 23
4. Deletion 28
5. Comparison 28
6. Ihclhsdn. 29
7. Indication 29

PARENTHESIZED STATENENTS 30

GIRL STATEMENT 32

IV. IAPLEWiENTATION AND OPERATIONAL REQUIRE1E•ITS 33
CIRL/FORTRAN TRANSLATION..... 33

MEMORY ALLOCATION. 33

?IRS FU.CTION EXECUTION TIMES 34

ii

0
Page

GIRL DECK SETUPS 36
Batch-Entry Deck Setups for a GIRL/FORTRAN Program. 37
Batch-Entry Deck Setup for Cataloguing a Graph Prior to

Compression or Expansion 39
Batch-Entry Deck Setup for, Graph Memory Compress or

Expansion 39

NOTATION. 40

CHANGES IN THE MANUAL 41

ACKNOWLEDGMENTS " 42

APPENDIX A - EXPRESSIONS IN GIRL 43

APPENDIX B - GIRL MNEMONICS CARDS 47

APPENDIX C - PARENTHESIZED STATEMENT BNF SYNTAX ... 49

0

0
iii

ABSTRACT

GIRL (Graph Information Retrieval Language)-is a

programming language designed to conveniently manipulate

informatibn in graph structures-. As such, the language

will play a key role in the construction of the organizational

schemes found, for example, in information retrieval, pattern

recognition-problems, linguistic analysis, and process

scheduling systems. The language is written to complement

an algebraic language,.in the-sense-that GIRL statements are

distinguished-from the statements of the'algebraic language

and the-statements may be-interleaved. The primary advantage

of separating symbolic and numeric statements is that the

Sprogrammer is afforded a-linear-,oneý-one-trace of graph

operations in-the code-description.

ADMINISTRATIVE INFORMATION

The work of this report was carried out in the Computer Sciences Division

under the sponsorshipof SHIPS 00311, Task Area SRO140301, Work Unit

1-1834-001.-

0
1

I. INTRODUCTION

GIRL (Graph Information Retrieval Language) is a programming language

designed to-conveniently manipulate information in graph structures. As

such, the language will play a key role in the construction of the

organizational schemes found, for example, in information retrieval, pattern

recognition problems, linquistic analysis, and process scheduling systems.

The language is written-to complement an algebraic language, in the sense that

GIRL statements-are distinguished from the statements of the algebraic

,language and the statements-may be interleaved. The primary advantage of

separating symbolic and numeric statements is that the programmer is afforded

'a linear, one-one-trace of graph-operations in the-code description. From

an opposing-point of view, F61.dman and Rovner's LEAP 1 and Ross' AED-O 2, for

example, are extensionsof ALGOL in the sense that graph or list operations

are interspersed with numeric operations. The result is that code sequencing

of graphoperations is bound by the infix, phrase substitution'nature of the

algebraic language, and does not lend itself to an easy scan of the graph.

On the other hand, the ALGOL extensions offer a uniformity of notation

necessarily missing from GIRL.

Feldman, J.A. and Rovner, P.D., "An ALGOL-based Associative Language,"

Communications of the Association for Computing Machinery, Vol.12,
No. 8, pp. 439-449 (1969).

2 Ross, D.T., "A Generalized Technique for Symbol Manipulation and Numerical

Computation," Communications of the Association for Computing Machinery,
Vol. 4, No. 3, pp. 147-150 (1961).

2

Graphs are composed of structures of (source node)-(link)-(sink node)

triples, one of which is illustrated here. One may think of such

B
A C

0

a structure as a functionB of argument A, and value C, read as: "B of A

is C". Moreover the function can be multivalued in which case B points to

an-ordered set of sink nodes, a list.

The function of GIRL is to-insert, identify, retrieve, delete, and

compare node--link-node triples. One purpose of GIRL is to serve as a base

for a more sophisticated language called PIRL3 which will generalize the

GIRL range of arguments from nodes and lists to arbitrary, directed graph

structures. Nonetheless, GIRL is a powerful and efficient language in its

own right, comparable in scope say to LISP4 . Whereas LISP is based on a

recursive function structure-in theory at least--GIRL acknowledges the

need for indexed'iteration- and-lab-el-led transfers, while at the same time

permitting recursive functions if they are permitted-by the complementary

algebraic language. In-addition, the arithmetic capability of-GIRL/FORTRAN

or GIRL/ALGOL is as good-as thatof the algebraic language, whereas the

arithmeticcapability df-LISP has been traditionally awkward at best.

Berkowitz, S., "PIRL - Pattern Information Retrieval Language - Design
of Syntax,"-Proceedings of 1971 National Conference of the Association
for Computing Machinery, pp.496-507.

4McCarthy, J., et al., "LISP 1.5 Programmers Manual", MIT Press,

Cambridge, Massachusetts (1962).

3

Perhaps the best way tolearn GIRL is by studying and working out

examples. Accordingly, the next Chapter presents'a graded series of

example graph-problems,ýsome worked out, some not. The alternative approach

would be'to'study the syntax and-towork the examples-by deduction. The

deductive approach-is"not-.recommended since the-language can provide very

" complex code'. The'inductive.approach-,on'the-other hand, begins with simple

• .linguistic~structures which lend themselves well to intuitive generalization.

Chapter' lII presents' the' detailed" syntax -of GIRL. The symbols used

specify the implementationlanguage. The format of presentation is as

follows: a-fragment'of syntax-in-Backus-Naur form (BNF) or a modification

thereof;-followed'by" explanatory.semantics',-and'concluded with annotated

examples-or-a-reference'to the examples'in'Chapter II.

. .The'last'Chapter-contains details-of-implementation, such as publication

notation;-"memory" allocation,-control-cards, run-times. Since the language 0
- 'or" its'implementation may' be-expanded-or-revised,'updates to the Manual

will'appear'from"time to time.

The-rationale'for' the'form oftthe'GIRL language may be found in the

5.original design'paper . 'Since~writing thepaper, moreover, other considerations

. have shed'more light-on'whya' graph-processing--anguage should have the

form' of GIRL;.'.Some-of these considerations- are reviewed 'in the Manual.and

.. .somewillbeissued as future attachments.

A version'of GIRL has been implemented-and operational since 1969. It

has'been"usedin"syntactic parsing;, pattern'recognition, sparse matrix

computation;' information'retrieval, network design, and an auditing compiler.

Berkowitz-, S., "Graph Information-Retrieval Language - Design of Syntax",
in-"Software"Engine'ringl' edited by-J.,Tou, Vol.2, Academic Press,
New-York, pp- 119-139 (1971).

4

* II. A GRADED PROGRAM OF EXAMPLES

This chapter presents a series of examples designed to give the reader

a notion of the power and flexibility of GIRL. The examples are graded

within each section in the sense that they become progressively more

complex, and they are-cumulative in the sense that an example may require

knowledge-gleaned from previous examples. However, the examples do not

comprehend all the detailsand structural variations of GIRL/FORTRAN.

Rather, if the reader-carefully studies each example to see what it presents

that he has not seen-before,-heis sure to ask a question beginning "What

.if...?" -It is-precisely-this-sparkof-curiosity that we intend the Chapter

to enkindle. A-reader with-a~questionof this software will find the

answer-by'a-study-of-the appropriate-semantics and syntax (in that order)

.displayed in Chapter III..

- In the examples, a-personnel file-is-constructed and manipulated. The

reader should-understand thatthe-example system-is neither a complete
.nor even a suitable way to approach the-problem area. Rather, the example

system offers-complex data- structures-that-we-use for convenience in

teaching GIRL. An excellent way'for the-reader to test his knowledge and

.. to appreciate-the-conciseness and legibility of GIRL would be to code

more-realistic programs in areas-such as information retrieval, job shop

"-..... -"simulation,-programmanagement, or syntactic analysis.

For the sake of reference, a table of GIRL expressions is supplied in

Appendix A. A mnemonics cut-out card is provided in Appendix B.

5

IDENTIFIERS, FUNCTIONS

1) Create a random node and call it NOUN2:

G $'NOUN2

2) Create the random nodes NOUN1, NOUN2, NOUNa1:

G DEFINE NOUN],NOUN2,NOUN3

3) Create a random node and call it both Xl and X2:

G $'Xl'X2
or G $'ýXl,X2)
or G $(Xl,'X2)

The identify (sometimes called name, define) operation offers a preview

of some basic principles of PIRL/GIRL, namely:

Statements are read and executed strictly from left-to-right,

leaving a value after the execution of each operation. The value

effectively initiates a new left-to-right execution (or statement

termination). In the case of identification, the operation leaves

the previous value unchanged.

A statement may be broken at any point to serve as a prefix to a

parenthesized list of suffixes. Since execution occurs strictly

from left-to-right, the value or operation remaining in front of the
left parenthesis serves as the initiator for all the suffixes. Since

nesting may occur to any level, a GIRL statement is a right-branching

tree.

Identifiers are FORTRAN integer variables whose value is the address

of some node.

4) If RAND(S) is a FORTRAN function which qenerates an integer from some

algorithm (say a uniform density on [O,MEMSZE] where MEMSZE is the graph

memory size), then name the resulting number, i.e., node, Xl and multiply

it by 2:

G *RAND(S)'XI
XI=XI*2

6

SUnless explicitly stated otherwise, the identifiers used in'the following

examples are all defined.

INSERTION

5) Insert the following graph: PERSON

G FILE PERSON DOE

6) Add SMITH and JONES to the file graph in (5)

G FILE PERSON (SMITH, JONES)

7) Describe SMITH by linking him with the attribute MARRIED to a new node

to be called NO, with the attribute SUPPORT to himself, and with the

O attribute SUPERVISES to JONES, DOE, and BROWN:

G SMITH(MARRIED $'NO,SUPPORT SMITH,SUPERVISES (JONES,DOE,BROWN))

8) Similarly, JONES is not married, supports hinself, DOE, and two others,

works in PROJECTI under SMITH:

G JONES(SUPPORT(JONES,DOE,"2"),MARRIED NO, WORKSIN PROJECT1
UNDER SMITH)

(Note the integer data insertion "2".)

9) What does the file graph look like now? How many multivalue lists are

there? How many circuits? (e.g., JONES WORKSIN PROJECT1 UNDER SMITH

SUPERVISES JONES is a circuit.)

7

RETRIEVAL, INDEX

.10) Retrieve the first and second values of the JONES SUPPORT link, and

call the values VI and V2, respectively. Find the person V2 SUPPORTs

and call him V3

G JONES+SUPPORT('Vl, .2'V2+SUPPORT'V3)

That is, A+B elicits the first value on its value list. Lists are not

named in GIRL! (A+B.I is the same as A+B in GIRL.)

11) Test whether or not the file graph contains information about DOE's

marital status. If it does, go to statement 300, otherwise to 400.

G DOE+MARRIED/400/300

12) Find the second person whom JONES SUPPORTs and ask whether it is DOE.

If not, go to NEXT; if so, continue to find whom JONES SUPERVISES and whom

the first such person SUPPORTs. Call the latter V4.

JONES+(SUPPORT.2=DOE/NEXT, SUPERVISES+SUPPORTV'V4)

Note that a point (.) indicates an operation, just as does the plus (+) sign.

That is, .2 applies not as index to SUPPORT, but to the result of the pre-

ceding prefix phrase JONES+SUPPORT. Similarly, SUPERVISES+SUPPORT is not

a phrase; rather, SUPERVISES applies to JONES+ and then (in strict left-to-

right scan) +SUPPORT applies to the result of JONES+ SUPERVISES.

Note also that /NEXT is a failure transfer, with "continue" on success.

Similarly, //NEXT would be a success transfer with "continue" on failure.

All operations may be tested for success or failure.

8

* TRANSFER

13) Is the third person on the file graph married? If so',!go to statement

300; if not, go to statement 400.

G FILE+PERSON.3+MARRIED=NO/300/400

Be careful. Compare the transfer here with the previous example. The word

NO has no particular meaning in the graph. The transfer tests only the

success or failure of the previous operation.

14) Name all the multivalue lists upon which the node JONES can be found.

Will FILE+PERSON.I=BROWN succeed for some value of I?

JONES can be found on:
the PERSON list from FILE along with DOE and SMITH
the SUPERVISES list from SMITH along with DOE and SMITH
the SUPPORTS list from JONES along with "12"

SThough the single node JONES can be found on each of these three lists,

each list retains its individual structure as illustrated in the following

diagrams, so that nodes on one list cannot be accessed by indexing another

list.FLSMT

PERSON SUPERVISES

That is, although JONES is on both the lists diagramed, one cannot access

BROWN by writing FILE+PERSON.5 as one might think if he were to draw the

picture as shown below:

a PERSON

SMIT

SUPERVISES

9

15) Let us give another name to the project that JONES-WORKSIN: we

will call it WORKSIN. Can we still find the project that JONES works

in? If yes, go to 350; otherwise, continue to the next statement.

G JONES(+WORKSIN 'WORKSIN, +WORKSIN//350)

The interpretation of this statement is a matter of definition. In order

to illustrate the definition, we replace each identifier with its defined

value in a strict left-to-right scan.

Suppose the initial values of JONES, WORKSIN, PROJECT1 are 100, 300,

500, respectively. That is, GIRL identifiers are FORTRAN variables, and

have values which might, by the way, be detrimentally changed in the

complementary FORTRAN program if the programmer were careless. Then the

statement has the evaluation:

JONES+WORKIN: 100+300 has the value 500
'WORKSIN: WORKSIN has the new value 500
JONES+WORKSIN: 100+500 haý no value

The last retrieval operation fails and control passes to
the next statement

DELETION

16) Correct the damage done to the file graph in 15, delete the MARRIED

link of SMITH, verify that he is not DOE's supervisor. If in fact he is

DOE's supervisor, go to 350; otherwise continue to ask whom he does

supervise and label the first such person as EE.

WORKSIN=300
I=0

400 I=I+I
G SMITH(- MARRIED, +SUPERVISES.I/450#DOE/350/400)
G 450 SMITH+SUPERVISES'EE

350

100

S An equivalent code is

WORKSIN=300
I=0

G 400 SMITH(-MARRIED, +SUPERVISES."I=I+I"/450DOE/350/400)
G 450 SMITH+SUPERVISES'EE

350

That is, double quotes may enclose an arbitrary, integer-valued FORTRAN

arithmetic statement---or arithmetic expression for that matter---and thus,

in this case, embody the iteration within the GIRL statement.

DATA, SEQUENTIAL SPACE

17) DOE has BS, MS, PHD degrees (Hollerith data), and received them in

years 1956, 1958, and 1961 (integer data),respectively. Add this

information to DOE's dossier by interleaving degree and data as Hollerith

0 and integer data, respectively.

G DOE DEGREE('//BSL,"I956'', '//MS1,"1958'', '//PHD',"I961")

18) For quicker access, let us repeat the previous example, but rather

put the data into sequential space- i.e., into the array SEQ, beginning,

say at SEQ(31). We might also modify the BS and PHD degrees by the

attribute GRANT, indicating, say, that DOE attained the degree under a

company grant. Note now that the cells in each block of SEQ must be of a

uniform data type.

G DOE(PEGREE;31;3 '/30/BSbbbbbbbbMSbbbbbbbbPHDbbbbbbb',
GRANT(;35;3 YES, .2 NO, .3 YES),
WHEN(;39;3 "1956", .2 "1958", .3 "1961"))

The indices refer to item locations on the respective lists. It would

have been more efficient to have placed all items except the first of each

* list into SEQ by direct FORTRAN statements.

11

If one were to look at the vector SEQ, one would find:

Address Contents Form

SEQ(31): 3 (number of items in block)

S(32): BS (Hollerith)

(33): MS (Hollerith)

(34): PHD (Hollerith)

(35): 3 (number of items in block)

(36): YES (identifier)

(37): NO (identifier)

(38): YES (identifier)

(39): 3 (number of items in block)

(40): 1956 (integer)

(41): 1958 (integer)

(42): 1961 (integer)

'Note that although SEQ affords quicker indexinq access, it also constrains

one to specify and remember the dimension of each block of SEQ beforehand,

thus losing the dynamic storaqe capability of nonsequehtial memory. On the`:

other hand, note that any node identifier placed in sequential memory may

be linked further just as in nonsequential memory. Thus,

DOE+GRANT+WHEN/FALL

is perfectly legal even though in our case it would FAIL since neither

YES nor NO has yet been given a WHEN LINK.

19) Find DOE's second degree, call it DEG, and change its associated date

to 1957 (not for the SEQ interpretation).

G DOE(+DEGREE./2'DEG, DEGREE ..2 "1957")

Do the same for the SEQ interpretation.

There are index retrieve, insert, and delete operations at a given

list location both for data of 4nspecified type and also for specified

identifier, number, and Hollerith data. The operations are multi-symbol

and have the following mnemonics: The point (.) indicates an index.

12

The minus (-) preceding an index point indicates a deletion at the indexed

0location. (When the deletion follows the link identifier of an insertion,

the insertion is destructive at the desiqnated location.) When a minus

H-) follows an index point, it indicates a list location to be found by

counting up from the bottom of the list. A slash (/) indicates Hollerith

data, another point (.) indicates numerical data, and an:equal sign (=)

indicates an identifier. Thus, -.. 3 means "delete third numerical item

on the preceding list." Similarly, -. 3 means "delete the third item on

the preceding list." Again, coding .-. "I=I+l" would mean "retrieve the Ith

numerical item counting from the bottom of the list, where I has been

replaced by I+l." The table at the end of the chapter lists the possible

combinations. Note that identifier values (integers) and numeric integer

data are distinguished, even in sequential space.

20) Give at least three expressions that will change DOE's PHD to an MD.

(There are more than three.) One might use the facts that ./M will access

(by index) or insert the Mth Hollerith datum, that -. /M eliminates such a

datum, that .M accesses by index the Mth item closes up the list and leaves

as its value the M+lth item,

21) Let us look a bit more closely now into the semantics of retrieval,

insertion, deletion, and indication.

G DOE+DEGREE

retrieves the first element of a list. But

G DOE+DEGREE.3

increments the retrieval to indicate the third element of the list. Now

G DOE-DEGREE

deletes the whole list (and leaves DOE +DEGREE)!' Why not delete just the

first element, to be consistent? Or on the other hand,why should DOE+DEGREE

13

not retrieve the whole list? Indeed, the latter question is the key to

our rationale. We do wish to retrieve the whole list, but in GIRL we have

no means of identifying or stacking the list. In PIRL3 this will be

remedied. How, then, shall we now delete DOE's third DEGREE?

G DOE+DEGREE-./3

How shall we insert MA as the second degree, while at the same time

eliminating the previous MS degree?

G DOE(+DEGREE-./2, DEGREE ./2 'I/MA')

or, more concisely, we imbed the retrieval tacitly in an insertion:

G DOE DEGREE -. /2 '//MA'

22) Push the DEGREE list down by adding another BS at the top:

G DOE DEGREE ./I '//BS'

Pop the DEGREE list back.

G DOE+DEGREE-./l'DEG

What is the value of DEG? It is DOE+DEGREE./l (before deletion).

23) Now replace the whole DEGREE list by an MA.

G DOE DEGREE -'//MA'

That is, minus (-) without index after a link identifier represents a

destructive insertion.

24) Do the following statements mean anything?

G DOE-DEGREE.2
G DOE -. 2 DEGREE

No, since .2 is an operational on a list, and as yet the list has not been

accessed. (In PIRL, however, these will be legal since a list may have

been identified by DOE.)

14

25) JONES' monthly expense ACCOUNT is located In a matrix ACNT. Point to

it.

G JONES ACCOUNT "LOC(ACNT)"

26) Now retrieve and update the Ith item in JONES' ACCOUNT by $3000,

presuming ACNT to be in labelled COMMON. Note that LOC is a CDC FORTRAN

EXTENDED function to compute the address of its argument.

G JONES+ACCOUNT 'J
K = J-LOC(J)+I
J(K) = J(K)+3000

The matrix ACNT has to be in labelled COMMON in order to preserve its

relative address from execution to execution.

27) Conversely, if JONES' account had oriqinally been put into ACNT,

the ACNT could be inserted into the graph by

0 DO 1 I=:,N
G 1 JONES ACCOUNT "ACNT(I)"

What if his ACNT held a list of the types of expenses (i.e., identifiers)?

INCLUSION

28) Find out if SMITH is in the PERSONnel FILE.

J=O
G AGAIN FILE+PERSON."J=J+I"/NO=SMITH/AGAIN

or, equivalently,

G FILE+PERSON :SMITH/NO

29) The inclusion operation : is read as "contains". Which FILE location

contains SMITH?

SG FILE+PERSON :SMITH/NO'LOC

15

30) Eliminate SMITH from the FILE.

G FILE+PERSON(:SMITH/NO 'LOC, -. LOC)

or, equivalently, since the value of :SMITH is its list location,

G FILE+PERSON -. :SMITH

31) Put SMITH back into the FILE.

G FILE PERSON .2 SMITH

32) Put SMITH back at the end of the FILE only if he is not already in the

FILE.

G FILE(+PERSON :SMITH//IN, PERSON SMITH)

or, in abbreviated form,

G FILE PERSON :SMITH//IN SMITH

33) Replace SMITH by BROWN only if JONES is in the FILE.

G FILE PERSON :JONES/NO .. SMITH BROWN

That is, add to the FILE of PERSONnel which contains ;JONES the replacement

of SMITH by the name of BROWN. This is shorthand for

G FILE(+PERSON(:JONES/NO, ýSMITH/NO 'LOC),PERSON .LOC BROWN)

RECOGNITION AND GENERATION

34) Note that the PERSONnel FILE is basically a generative list. When a

recognition query is posed, the membership operation is necessary, but if

such queries were common, it might be easier to restructure the FILE as

a recognitive tree. For example, one might insert:

G FILE(DOE FILE, SMITH FILE, JONES FILE)

16

Then asking for SMITH or deleting him would have the respective forms:

G FILE+SMITH
G FILE-SMITH

The foregoing distinction between recognitive and generative memory structures

is fundamental. The inclusion operation offers an abbreviated notation for

accessing a list by content rather than by index, and thus offers an

effective, temporary restructuring of a generative list for recognition

purposes. Since indication seems to be the complement of inclusion, one

might think that a restructuring of .a recognitive relationship should be

available, namely: xpJ meaning generate the jth link of the node x.

This reasoning is correct, but the underlying hashed-address memory scheme

does not yet permit such commands to be realized. The situation will be

remedied in the PIRL language 3, in which subgraphs are handled much as

generalized nodes in the sense that one may query memory as to instances of

a subgraph schema of given form but only partially specified node or link

component. Due to the structure of the currently simulated associative

memory, if one wanted the link list of a node available, the only practical

way to handle it would be to explicitly imbed the list in the graph via a

distinguished link.

17

III. THE SYNTAX OF GIRL/FORTRAN

THE GIRL/FORTRAN PROGRAM

A GIRL/FORTRAN source program consists of interjeaved blocks of GIRL

and FORTRAN statements. The form of FORTRAN statements is specified

elsewhere 6 .

GIRL statements are distinguished by a G in the first column. In all

other respects, the statement identification, continuation, statement, and

comment fields for punched-card/tape format are exactly the same as for

FORTRAN.

The labels which fill FORTRAN statement identification fields are

restricted to positive integers less than 20000. GIRL labels are discussed

below.

In the syntax, the metasyntactic symbols (is defined to be)

and I (exclusive or) are used as part of the usual Backus-Naur (BNF)

notation. A string of small Roman characters represents a syntactic

category and FORTRAN Hollerith characters form the terminal alphabet.

Phrases enclosed between double lines ...H1 are descriptions of categories

easily understood but not easily represented by a usual syntactic

description. For example,

emp fIempty categoryll (0)

represents the empty category; i.e., the null alternative when "emp"

appears in the right-hand side of a syntax statement.

6 .,American StandardFORTRAN"; NAmeridan Standards Association, New York

(1966).

18

BLANKS

o Semantics:

Blanks are required only to separate identifiers and/or labels not

otherwise separated by operators or delimiters. Otherwise, blanks may be

used without restriction. The syntax will not formally specify the use of

blanks since they are properly a lexical concern.

DEFINITIONS, IDENTIFIERS

" Syntax:

define ::= DEFINE idfl (1)

idfl ::: idf I idfl, idfl (2)

idf ::= !!FORTRAN alphanumeric identifierl! (3)

id ::= idsub i (4)

i ::: 'idf i 'idf I emp (5)

0 idsub ::: idf j $ 1 * idf (idcfl) (6)

idcfl ::: idf I cons I idf (idcfl) I idcfl, idcfl (7)

cons ::= J!FORTRAN constant!l (8)

"o Semantics:

Identifiers must be defined before use as FORTRAN variables by qiving

them the value of an internal node of the graph. One way to do this is to

use a DEFINE statement (define), especially when a larqe number of variables

are to be assigned node addresses at once. The DEFINE statement must be the

first executable statement in a GIRL/FORTRAN program, and there is at most one

such statement in the program. The identifier list (idfl) which forms the

argument of DEFINE is of arbitrary length. Although the defined identifiers

are in fact integer variables, the programmer should not explicitly declare

them to be so. A means of definition by the operator quote (') is given in

* Equation (5). Any variables thus defined must be tacitly INTEGER or

explicitly declared to be so.
19

FORTRAN alphanumeric identifiers (idf) and FORTRAN constants (cons) are

defined elsewhere. 6 However, a restriction is that identifiers may not

begin with LV. By writing the symbol $, one can generate a random internal

address, not otherwise used, in place of an identifier. Similarly, a uni-

valued function (* idf (4,dcfl)) may be defined exactly as a (non-recursive)

FORTRAN function subprogram§ and used in place of an identifier.

o Exampleý

(i) Three ways to have X and Y reference the same randomly generated

node:

*RANDM(START) 'X 'Y , where RANDM generates a
random number between 1 and
the graph memory size.

$ 'x 'y
DEFINE X, Y

(ii) See examples 1 through 4 in the previous Chapter. 0

NUMERIC, HOLLERITH DATA

o Syntax:

data(::: "aes" I '//hnq' I '/integer/ h' (9)

aes ::= IIFORTRAN arithmetic expression or statementll (10)

hnq ::= anq I h anq (11)

h ::=a I h a (12)

anq ::= digit I A,...,Z I + I- I . * (I () I = I#
l , 1 .(13)

a ::: anq I ' (14)

integer ::= digit I integer digit (1.!5)

digit ::= 0,...,9 (16)

dseq ::: ;ivc; ivc emp (17)

ivc ::= idf I int "aes" (18)

0
20

o Semantics:

In Equation (13), the notation A,...,Z stands for a disjunction of the

letters of the alphabet; similarly, for 0,..,,9 in Equation (16),

Sink nodes, besides representing identifiers, also represent graph-

held or matrix-held data (data) expressed as an arithmetic statement or

expression (aes), as an uncounted Hollerith string (hn_) without quote ('),

or as a pre-counted Hollerith string (h) Possibly including a quote. The

length of the pre-counted string must match the integer between slashes,

whereas the length of the uncounted string is bounded only by the capacity

of memory. Hollerith strings of ten characters or less may be stored in

the graph or in the matrix SEQ. A longer Hollerith string must be stored

in one block of the matrix SEQ, Each SEQ matrix cell holds ten Hollerith

characters except for the last cell of a block which contains ten or less

0 characters, left-justified. Both identifiers and numeric data occur as

sink nodes either in the graph or in SEQ. In order to set up a data block

in SEQ, one uses the declaration dseq (see Equation (17)) in an insertion

operation, as discussed later for Equations (33) and (34). In Equation (17)

the first integer variable or constant (ivc) represents the address of the

head cell of a SEQ block. The second ivc whose value is stored in the head

block cell, represents the number of items in the block. The data of any

block follows the head cell of the block and its type is homogeneous through-

out the block. The type of data is denoted by the indicator "ivc for

numeric data and the indicator '/ for Hollerith data as shown in Equation

(9). These indicators initiate the data declared by dseq as shown later in

Equation (34). The absence of such indicators signals a block of node

identifiers. Clearly the speed with which one can manipulate block data

must be balanced in use against the rigidity of a block structure,

21

o Example:

Review example (18) in the preceding Chapter.

TRANSFERS, LABELS, COMPARISONS

o Syntax:

ti ::= i i ti I /labeli I //labeli I /labeli/labeli I eqs

I eqý' ti I emp (19)

labeli ::= i label i I label i (20)

label ::= idf I integer (21)

eqs ::= eqs eqs eqn divc ti I emp (22)

eOn ::= = # ^ (23)

divc ::= data I ivc (24)

o Semantics:

A label (label) may take one of three forms:

(a) relative GIRL address---an identifier (id) of less than six

characters not beginning with V. Relative addresses do not

refer to FORTRAN statements.

(b) absolute GIRL or FORTRAN address--a positive integer less than

20000.,

(c) variable GIRL or FORTRAN address (for use as the argument

address of a transfer operation only)--a FORTRAN integer variable

beginning with V, having an absolute address as value.

A label -either labels a GIRL/FORTRAN statement by residing in the statement

identification field 6 or points to a statement for control purposes as the

argument of a transfer operation.

The two argument addresses of a transfer (ti) indicate the statement

address to which control is transferred upon failure or success, in that

order, of the operation immediately preceding the transfer. If the first

22

0 (or second) argument address is empty, the occurrence of a failure (or

success) condition indicates that control is not altered; that is, the

remainder of the statement is to be executed. Also, control is not altered

for success or failure if no transfer whatsoever is specified,

Finally note that DO loops may not terminate on a GIRL statement.

Rather, they must terminate on a FORTRAN statement (e.g., a CONTINUE

statement).

Identification (i) is explained in a previous section and comparison

(eqs) is described in the next section. The function of identification is

to name the value that precedes it. The function of comparison is to test

the value that precedes it for equality with what follows. These operations

are included here for syntactic convenience since their value is the same

as the value preceding the operation.

0
oExamples:

Mi) Give the name NEW to the preceding identifier and transfer to

the relative address REL if the preceding operation failed, or to

the absolute address 250 if the operation succeeded:

X'NEW/REL/250

(ii) If the preceding operation succeeded, name the resulting value

NEW and transfer to the variable address VAR, otherwise continue:

//'NEW VAR

(iii) Review examples 7, 8, 9 in the preceding Chapter.

0
23

UNPARENTHESIZED STATEMENTS

o Syntax:

unpar ::= id usuff (25)

usuff ::= suff I dsuff (26)

suff ::• id ti pm ix ti dseq id ti

+ id ti pm ixn ti

bo id ti

'idf ti

suff suff (27)

dsuff ::= id ti pm ix ti dseq data ti

+ id ti : bbj ti

I suff dsuff (28)

bo +. # (29)

ixn ::= ixo ivc".o

I ixo : obj (30)

ix ixn emp (31)

obj ::= ivc data (32) 0
ixo ::= . pm ixtyp

I ixtyp pm (33)

pmn ::=+ I - (34)

pm ::= pmn I emp (35)

ixtypn ' I / • (36)

ixtyp ixtypn I emp (37)

o Semantics:

GIRL unparenthesized statements (unpar) are evaluated on a strict

left-to-riqht scan. The evaluation of an operation may be either an

identifier node or a data node. An identifier node may serve as prefix to

a suffix string (suff), but a data node is an evaluation instance of a

data suffix (dsuff) and is terminal. The basic operations are now explained.

24

@ 1. Identification

Althouqh identification has been discussed previously, we now comment

on its use in the context of an operation sequence. Quite simply, the

operation suffix 'idf gives a name to the last evaluated node or link.

The operation always succeeds and is transparent to a transfer of control.

That is to say, a success test following an identification refers to the

last non-identification operation.

2. Insertion

A node-link-node triplet is inserted by juxtaposition of the respective

identifiers. For example, A B C. Insertion is non-destructive, so that

if A B C has been inserted, then inserting A B D will add D to the list

linked to A by B. Furthermore, since a multivalued function generates its

value set in the order of insertion-i.e., generates a value list-the

repetition of an insertion triple induces a repetition of sink nodes on the

value list. The presence or absence of at least one value on a value list

before insertion may be tested for either directly after the link identifier-

by the first ti of the first alternative of suff or dsuff--or after the

insertion--by the last ti of the first alternative of suff or dsuff. For

example, A B /X C transfers control to X if the value list is empty,

whereas A B C /X inserts A B C and then transfers control to X if the value

list had been empty. The value of an insertion is the identifier or data

inserted.

By placing an index (ix) after the link identifier, one can insert

destructively or non-destructively at a specific location in:the value

list, counting from the top or bottom. The success of the index retrieval

@ may be tested (ix ti of suff or dsuff). The formalism of the index ix

will be detailed in the description of the indication operation.

25

A sink node may be placed in the matrix SEQ by using the dseq

mechanism (cf. Equation (17)). Each time dseq is used, a new block is

declared, and it is the programmer's responsibility to avoid block conflicts.

The dseq declaration stipulates two numbers. The first number indicates

the location in SEQ of the head block cell. The second number, which

resides in the head block cell, indicates the location in SEQ of the last

block cell. After the first sink node has been placed in a SEQ block by

dseq declaration, other nodes of the same type may be put in the same block

either by a GIRL indexed insertion or by direct FORTRAN store. SEQ storage

and graph storage may be mixed on the same list and the search for a list

cell of given index will traverse SEQ block cells. However, a Hollerith

string of more than ten characters must be stored only in SEQ and a Hollerith

SEQ block is considered to be a single cell as far as an index operation is

concerned. An attempt to insert more than ten Hollerith characters without

a dseq declaration will result in the first ten characters being placed in

the non-SEQ associative store as a single Hollerith cell. The purpose of

SEQ is to allow rapid GIRL retrieval of list information for lists of fixed

length in such a way that the GIRL retrieval mechanism is blind to the

storage medium, be it graph or SEQ. (However, for a Hollerith retrieval,

as will be discussed in the next section, a special variable is required to

distinguish between SEQ and non-SEQ storage.) The underlying associative

memory operation is quite sensitive to excursions into SEQ, it is usually

not a good idea to mix short SEQ blocks with graph nodes; nor is it wise

to insert or delete in SEQ by means of GIRL--FORTRAN should be used instead.

A detailed example is in order,

26

Example of Insertion

Consider the following program of insertions:

X=3

G A B "X=X+2"
G ABD
G ABD
G A B ;1;4 '//MANY CHARACTERS'
G AB .5E
G A B ;7;9 F

The resultant graph has the structure:

-E MANY CHARA 2

SEQ 7 .. CTRS

4

S5

6
9 7

F 8

9

At this point, A B . 7 "3", which attempts to put '3' into SEQ(9), would

fail because of a type error. That is SEQ(7) heads an identifier block.

On the other hand, A B .6 G would succeed--albeit inefficiently-in putting

G in SEQ(8) and moving F to SEQ (9).

Finally, we note a textual variant; namely, X Y - Z is the same as

X(-Y, Y Z). (The notation X - Y is explained in the description of deletion.)

o Examples:

ReView examples 5 - 9, 17, 18 in the preceding Chapter.

27

3. Retrieval

The value of A + B is the first node on the list linked to A by B,

if such a list exists. If the list does not exist, then A + B evaluates to

A. The success of retrieval is, as usual, open to testing as specified by

the ti in the syntax + id ti (or bo id ti) of suff or dsuff. Retrieval of

a Hollerith SEQ block has as its value the contents of the first block cell.

The COMMON variable LVHOL is used to distinguish SEQ and non-SEQ storage.

For SEQ Hollerith storage, LVHOL contains the SEQ index of the head block

cell; for non-SEQ storage, LVHOL contains a zero.

6 Examples:

Review examples 11 - 13 in the preceding Chapter.

4. Deletion

The effect of A - B is to delete any list that might have been linked

to A by B. The operation is said to have "failed" only if there was no list

to have been deleted. Again, the success or failure may be detected by

test. The value of A - B is the value of A + B.

E0x l:

See example 16 in the preceding Chapter.

5. Comparison

The effect of A = B is to succeed if A and B have the same value.

Similarly, the effect of A # B is to succeed if A and B do not have2'he

same value. The value of either of these operations is A. Note that B

need not be an identifier. For example, if A happens to have the value

"3", then X Y A = "3" //TAG will go to TAG. Actually, X Y A = 3 //TAG

is just as valid.

S. 2 8 . • .. .

o Examples:

Review examples 12-14, 16 in the preceding Chapter.

6. Inclusion

The effect of A+B:C is to succeed if C occurs at least once on the

list linked to A by B. The value of A+B:C is the list index at which

C first occurs. If it fails, the value is the value of A+B.

o Examples:

Review examples 28-30, 32 in the preceding Chapter.

7. Indication

Executing an indication (ix) after the link identifier of a retrieval

or insertion, accesses the item of stipulated index from the linked list

under question. Thus, A+B+.+3 means: retrieve the third item on

the list linked to A by B; similarly, A B+.+3C means: do A B+'.+3 .

and place C on the list between the third item retrieved and its predecessor.

The '+' signs surrounding the '.' may and usually are replaced by emp.

If the '+' preceding the '.' is replaced by '-', the meaning is changed

from retrieval to deletion. Thus, the destructive insertion A B-.3C means:

delete the third item on the A,B list (A=B-.3) and then make C the new

third item (A B.2C). If the plus (+) following the period (.) is replaced

by minus (-), the indicated item is found by counting up from the bottom

of the list. Thus, for a list of length 5, A+B.2 and A÷B.-3 retrieve the

same item. Counting up or down the list can also be done by index type

(ixtyp). Thus, A+B=5, A+B./5, A+B.5 means: retrieve the fifth identifier,

Hollerith, numeric item, respectively from the A,B list.

29

When an index deletion is performed as in X+Y-.I, the value that

remains is the deleted one. If there was no such value, then a failure

is reported and X is left as the value. Similarly, in an index insertion

such as X Y .I Z, the operation succeeds only if the list already has I-1

values or more. The index operation may be tested for this failure, and

Z in any event is left as value.

o Examples:

Review examples 12, 13, 19-24, 28, 30, 31, 33 in the preceding Chapter.

PARENTHESIZED STATEMENTS

o Syntax:

Since the BNF syntax for parenthesized statements is complicated and

illegible, we relegate it for completeness' sake to the Appendix. Instead,

we introduce some new metasyntactic notation that properly fits our intuition

about how parentheses are applied to a language that scans strictly from

left to right: namely as nests for suffix sequences. Thus, the notation

X(Y will mean

X(Z) Ix Y
Z ::= Y,Z I Y

That is, the parenthesis permits an optional, repeated sequence of that which

follows the parenthesis. If X is empty in the case W(X(Y, then the second

parenthesis option is void. The following syntax is a direct modification

of unpar in the preceding section.

0
30

par ::: unpari(psuff I unpari(pdsuff) (38)

unpari unpar I id (39)

psuff id ti(ti pm(pix ti(ti dseq id ti(ti psuff

I +(id ti(ti pm(pixn ti(ti psuff

I bo(id ti(ti psuff

I '(idf ti(ti psuff

I usemp (40)

usemp usuff I emp (41)

pdsuff id ti(ti pm(pix ti(ti dseq data ti weq

I +(id ti(ti :(obj ti.weq

I psuff(pdsuff (42)

pixn pixo(ivc

I pixo(:(obj (43)

pix pixn I emp (44)

pixo .(pm(ixtyp

I .(ixtyp(pm (45)

wea (idf(weq

eqn(id ti(ti weq

I emp (46)

eqn ::# : I

o Semantics:

The formidable syntax given in the Appendix has a very simple

interpretation: namely, that any prefix fragment of a statement may

be followed by a parenthesized sequence of suffixes, any one of which

in turn may be interrupted to establish a prefix fragment to further

parenthesized sequences. Some minor qualifications are necessary.

First, Parenthesization must not contain the empty string. Thus, (),

((A B C)), and A((B C)) are illegal. There would be no difficulty in

handling these forms, but it seems to be a better debugging aid to spot

useless parenthesis. Secondly, certain categories quite reasonably do

31

not take suffixes. For example, dseq can only prefix a single node,

namely the first item of a SEQ block. Similarly, the symbols of a

transfer operation occur only once for any qiven test. Finally, data

suffixes (dsuff) may be prefix only to identification and or comparison

sequences.

o Example:

The preceding Chapter is replete with examples of the parenthesized

statement.

GIRL STATEMENT

o Syntax:

GIRL statement ::= unpar par

032

IV. IMPLEMENTATION AND OPERATIONAL REQUIREMENTS

0

GIRL/FORTRAN TRANSLATION

A GIRL/FORTRAN program is translated to machine code in two steps:

"o a preprocessing phase which translates theIGIRL code to

sequences of FORTRAN subroutines calls and stack manipulations.

"o a FORTRAN compilation of the entire program.

A one-pass GIRL/FORTRAN compiler is under consideration.

MEMORY ALLOCATION

In the preprocessing stage,FORTRAN subroutine calls are assembled to

interface an efficient associative memory simulation called GIRS 7 (Grhph

Information Retrieval System). GIRS is currently implemented on the CDC

6700 as a hashed-address, direct-chained memory scheme, In the packed

version of GIRS, insertion of a node-link-node triple requires one 60-bit

word; insertion of a list of N triples requires N+l such words for N>l.

In the unpacked version of GIRS, each triple requires four 60-bit words;

each list of N triples requires 4N+4 such words for N>l. The size of the

graph-i.e., the number of available node addresses---nay in no case exceed

215, and in general will be limited to a lower bound by the amount of core

made available to the user. A graph paging facility is now under

development.

Berkowitz, S,, "Design Trade-Offs for a Software Associative Memory,"
Naval Ship Research and Development Center Report 3531 (May 1973).

33

In addition to the graph memory as such, one may also use a sequential

memory for more rapid access to sink data lists. For this purpose, one

must declare a vector SEQ in a DIMENSION or COMMON statement.

One may compress or expand the hashed-address memory of a previously

constructed graph. The deck setups for accomplishing this task are given

in a later section.

On the CDC 6700, the preprocessor binary program requires a total of

6736 words, including a 2416 word buffer. During FORTRAN compilation and

execution, the preprocessor is overlaid and the core memory field length

reduced or expanded to meet the program requirements. During execution,

the GIRS binary program occupies 1607 words for the unpacked version, and

2592 words for the-packed version

GIRS FUNCTION EXECUTION TIMES 0

Because of the structure of the CDC-6700 operating system, it is

difficult to-give-accurate estimates of average execution times. The

following table; therefore, indicates'very approximate times for

executing INSERT(A'BC), FIND(A+B), and DELETE(A-B) functions.

AVERAGE CDC-6600 EXECUTION TIMES FOR GIRS ROUTINES
(in microseconds)

Unpacked Packed
MVL MVL

Minimum Increment Minimum Increment

INSERT 60 0 185 0

FIND 50 15 76 28

DELETE 63 28 192 169

0
34

The tables lists minimum execution times and multivalue increment times

e for the packed and unpacked versions. The minimum times refer to

operations on lists of a single nbde-link-node triple in the absence of hash

conflicts. When the memory is p percent full, one may expect hash conflicts

to increase the minimum times by an increment of 19.5p microsecond'

as a very rough rule of thumb. For lists of more than one triple, the

multivalue (MVL) increment time for INSERT represents is zero since the

bottom of the list is accessed uniformly by an up-pointer for lists of any

length. For FIND or DELETE, the MVL increment indicates the additional

time required to retrieve the nth list item or to d~lete a list of n values,

as opposed to retrieving the n-Ith item or to deleting a list of n-l

values, respectively.

Two final comments on the table are in order. First, the average

minimum time for FIND when the retrieval fails is 32 microseconds for either

the packed or unpacked version. Secondly, the MVL increments for the FIND

routine may be substantially reduced by use of a saved index option.

Indeed, the retrieval times for any item on a list in an iterative search

with saved index are a constant 103 and 141 microseconds for the unpacked

and packed versions, respectively. Basically, the saved index mechanism

retains the last accessed list address f or each index variable in the GIRL

code so that each new access search does not have to begin from the head

of the list. Thus, in iterating down a list of k items, one can expect

k increments rather than k(k+l)/2. If items are added to or deleted from

the list body, there is the danger that subsequent indexes references to

the list will be out of sequence if they have retained a previous saved

index address. There is a mechanism imbedded in the preprocessor for

circumventing this danger, but it is somewhat bulky. Moreover, operations

35

0
on short lists perform more efficiently without the overhead of a saved

index option. Therefore, one may void the saved index option either for

the entire program---by placinq NOSAVE on the options control card, as

described in the next section-or for part of the program--by setting the

distinguished variable LVNOSV equal to unity at any point in the program.

Setting LVNOSV=O restores the saved index option.

GIRL DECK SETUPS

In the following, the CDC 6700 batch--entry deck setups for GIRL/FORTRAN

runs and for memory compress/expand runs are presented. Lower case letters

indicate card images that are either described after the setup or are user

dependent (job card, charge card). Upper-case letters refer to character

images. All system card images begin in Column 1. Those which are

indented refer to FORTRAN card images whose code begins in Column 7. The

card number is for reference only and need not be typed.

36

Batch-Entry Deck Setup for a GIRL/FORTRAN Program

Card No.

job card (1)

charge card (2)

ATTACH, PREP, CAIZPREPBIN, MR=I. (3)

ATTACH, GIRS, CAIZGIRSBIN, MR=l. (4)

PREP. (5)

FIN, I=TAPE8. (6)

FTN. (used only if purely FORTRAN routines are to be run) (6a)

LOAD, LGO. (7)

GIRS. (8)

end of record (9)

memsize optionl option2 ... (10)

O PROGRAM nameor }(11)

$ SUBROUTINE name

non-DATA specification statements

G DEFINE string (optional) (12)

DATA string (optional) (13)

G EXECUTE (14)

GIRL/FORTRAN executable code (no END statement)

G COMPLETE (15)

other GIRL/FORTRAN routines

COMPLETE (16)

end of record (17)

purely FORTRAN routines

end of record (18)

data
end of record (A),
end of file (20)

37

Notes:

1. End of record is accomplished by a simultaneous 7/8/9 punch in

Column 1. End of file is accomplished by a simultaneous 6/7/8/9 punch

in Column 1.

2. In the GIRL/FORTRAN program, GIRL statements are declared by

punching a G in Column 1. Continuation cards are handled as in FORTRAN.

3. The options Cardt (10) has the following entries:

memsize - The first six columns store an integer of at most

six digits that stipulates the number of possible nodes that the

graph may contain. There is no default; some integer must be

entered.

*IXX - An integer of at most two digits preceded by an asterisk

(*) declares the file number on which an old graph is stored.

Dofault implies the setup of a new graph.

$IIIIII - An integer of at most six digits preceded by a dollar sign

Cs) diclares the size of SEQ. Default size is one location.

PACK - Sets up code for packed version of GIRL. Default is

unpacked version.

PRINT - Prints GIRL program on output file. Default is no-print.

COMMENTS - Places GIRL code with a C in Column 1 into preprocessed

FORTRAN code. Default is no-comment

NOSAVE - Eliminates 'saved index' facility, and is therefore

appropriate for short multivalue lists. See the discussion

of 'saved index' in the previous section.

t Except for the first entry (first six columns), the other entries are
optional and may appear in any order, separated by at least one space
or comma.

38

* Batch-Entry Deck Setup For Cataloguing-a Graph-Prior-to Compression or

Expansion

Compression or expansion of graph memory leads to a re-ordering of node

addresses relative to the cell address at which node-link-node triples

are stored. Therefore, one must save node addresses-(which are of special

interest otprograms that massage the-graph) so-that the compress/expand

program (described in the-next subsection)-can-retrieve the node address

mappings.--In the following-setup, these-addresses are represented by

varl,..., varn. The mestasymbol-pfname refers to-apermanent file name to

be assigned-by the user.

The deck setup-is the same as for-aný GIRL/FORTRAN run with the following

additions.

o Card (4) is followed by

REQUEST TAPE17, *PF.

o Card-(8) is followed by

CATALOG, TAPE17, pfname.

o Card (10) should include the option PRINT.

o Card (11) should have"(TAPEl7,...) following the PROGRAM name,

where the.dots indicate other files used by'.the program.

o Card (15) ýhould be preceded by

CALL GIRSDMP(O,O,17)
WRITE(17) n, varl,..., varn

Batch-Entry.Deck-.Setup-.for .Graph .Memory-Compression-or Expansion

The deck setup is the same-as-for-anyiGIRL/FORTRAN run with the

following additions:

o Card (4) is followed by

ATTACH, TAPE99, pfname.
REQUEST, TAPE27, *PF.

39

0 Card (8) is followed by

CATALOG, TAPE27, pfname.

o Card (10) should include /lll1ll--an integer of at most six

digits preceded by a slash, declaring the size of the new graph

•memory. The card should also include *99.

o Card (11) should have (TAPE99, TAPE27) following the PROGRAM

name. The deck is completed by

COMMON /LSAVE/ n, varl,,..., varn
G EXECUTE

READ(99) n, varl,..., varn
CALL CONVERT
CALL LVDUMP(O,O,27)
WRITE(27) n, varl,..., varn

G COMPLETE
/ COMPLETE

end of record
end of file

NOTATION

The notation used in the preceding-Chapters will be used for the

CDC 6700 implementation language of GIRL. The publication language

notation is proposed to be the same except for the Lhanges indicated in

the following table:

CDC 6700
Implementation� Publication

Language Language

// 0

II II I I

40

CHANGES IN THE MANUAL

It is expected that the manual format, programmed learning Chapter, and

implementation will be modified and/or expanded from time to time. Those

who wish to be placed on the mailing list to receive such changes shoul0I

write the author. Suggestions and criticisms are welcome. Information

related to actual use of the language would be appreciated.

41

ACKNOWLEDGMENTS

The language described in this report was implemented on the

CDC 6700 by I. Zaritsky. His comments.and those-of G. Gluck and

J. Garner are gratefully acknowledged.

0
42

APPENDIX A

EXPRESSIONS IN GIRL

43

4-) 0r
4-) HS- CI

<o o 0
a) "aM4- 0C*

4-) (1
L) 4-) 4-0 pI 0

(V u 0 , . < CC

C U I. 4-)
o r-* (n LL0
o 0 C4- in0*

L)) * - 4-
4-' ou0 u Q)

(A 4- 4- C ..- 4-'
U)0 *S-C

0>- >- C0 0o ~ 0
U C:C4-

0 > o C)< C

0 - - 4-) 4. 4 - M r
'< S- 0u 0

U)).C 4'~ 4-'4-)~ 4-' 0: c<> .)

(D a)-C C 4-' 0.- C) C-4 (0
0a 4 0* >+0-) 0Pm >- I- r >-

X: 4--$ Co u u Ci * L
0- 0L 4- I CJ0 Or? 0).

O W~~~ r 4- -' 4- 4'
4-'0 '4-3 C -1)) C. C:cK C< 4-' 04~ S.- 0- Cý - 4-a

C.O Cý 0 v- C OC- +ea +
mrC m -) 0 LM0

001< ZL. 2~-' 4- - 0 c u4-3 > . >L) U

CC-0 J. C) CCA,
0 t 0 C 0 0

GOl)> I-) -) a) 0 r *r.*r *-

C., X: _U_ - 4-) M 4-3 F cr- U) 4 -U) 4
S-er-a > * ~ 04- ')uu< 5- L - L -00 -o

10 S- -a Ua- L) U) U) c -U x-))0 U

.r -or -- u) 0- r-o 0c 0OU C

0 i C c) C S-CC C

o 0 00 0 .0

V)~~- a)I>0-

) LE) 0 0- W - C04\JnQ 4-) 1 .C-)

C)) ZU) r- CU) 0) 0U) ci -) cZ) C) 4-')

X:. 4- 1: L) -..0 L0 uO V) U0 (n) r-),

X 0

C)~ Uoil

Iii t- 0U H I- CQ 0-MM
:3~~~% -1-om< -c,+

+ _o0 < 0 Cr * <. 0H L- 4-)

__ ____ + Z -<- -- J-~--,-S

44. 0i U

*L 4- 0

o +- 4) CA-F

e') 4-) =~ (A u
4- to r-S.-4-3 4)
u i 0 C-- &-S.

o ; V) S.- C. 4

c) Uw -w 4-

* cx Lj.J-.4-
o I-~I 0 0.C-'

Uý 4-) (1)

0~ 0 * '- C4-) -r- .- 4
I 0.- S-) E L-M4-

r_ Wt 0 4J- >04

0 0 4-3 g-.- ~ c
C) 4-- r- a) (0--. ~

4cc-- 0) ^ r- M4-)c
F- 4-) +O LO S-

C') - 4-' c o.
ccJ 4- 40'- F-*C

0~~~~ cc* LI - 40 u-
OF~~~ >)V) S-00U*c

4-, r** M* 4- 4-) a4) C
4)L~L * -mE U P C 4J-)r

r-L Li.e' 'a- -r- - -E.W CWe h

0) r r a- (U C-P- 4-) 0_ .

CC .1 + 0 w W" 4- r-~ CAC
>< X CnI U- -r -. 0 co

E .u (u c44-
(n CUM CO co)()S

0- =, r-i 0- C 1)t
C)' 0-~ CL -4 u 4-lo' -

x- a) a) (1) W0-C C 0
V) Lii w~ V-6 CV)I4 -0

>< U
V)- c-CV c- -\J

I ccc 0 0

<-. 4--) 1-4- 04--
cc cc cco D

r ~ cc- 4--- (0.0- UU QWS- 04-) 4

- -i 4- > oS - c r 3 L r
oc <* < CLWi--4 - 7E A

cc cm 4-' X 04-) < - 4 1 V
S- cc > 4-) r-C r- * C 4-
WI4 0 (1) OS-')Cl CL f o
=4) Cucl a0ux4J

LL 0 --1.C .X4'c- rW .()
C.+ I) CWCO 4 -'0-

45 - U> - *4) CCC ~5-4

3:

$.- (2) m a.Q
i'.C) -- >l -0__0 = 4-)
Q4-) c 0 V) Cl)

• o •Cl)"-' (.)4-
*C)- E S- a)~ au-i,.., I. .• • 0.. u L)

C:()Z 0 o a)W4- 0 - CE 00
C C l), : .C o

V' .. - D••-.- 0 4-,-

M4- .) 4S-" r- .--.
U)~ C- > O o1~ W 4

°�U o, t) 4)4-)

M ()r--W r -- 40
CL- .r- a E

m.- ca 0- - r-• = C,"

C ~ (ACr- ' M U 4-3

- (0 0, 4-3 -M r-".0 r- J a r- - ._ .i 0) " (A
M v C, &,v

4-. /) ,u" 4-) a u

a) -0o)r 3C 0C

" .- U C r-3 V S- 0 L -
C I a- CL £,. - r- 4,+ - S- 0 4- ;a.

'0 40- a, (a .4- r- . -jS- 44-" E G) 0-- C: (0 W-
a)00

a) .. - a. U) S.. 0u • 4 •

4*-4..- ',.,' - 2W- 4 - •) ,.a, ~ -a L..0 F- cu fu)> 4 ia ~

'- (a -4-3 >=0) 0 :3 4- + w.C) 04~I V -) a , ' 0 D
4-), oL. 4 0ý U- m tno x a -I= (U

C •) -- C •0j-

a, >< ...)/)UI--.,-- <~ ./ •0""

U1) > 4-) 0. 4-.- a (0 L> 0 A >- C L +v S - 4 - 0 4 J 11 '

• ' .-- 0 0')"

4-

- 4- *H- -

• 0 0 r- a 4 0L
0 0 0 C 0 a,• 0 0(n- q- r- OS. *'U 4- 04J l 0

S- .+-a,- r r_ 0) 4 4-

C) alE to- 00 r C 4J *-r- (D a,) 4-) -) 4) ~a
co cC r- •C r- -- U 4- =+

:? D0 E C tu 4- C-. 4- cr >< 0C > . a) 3 + +
X< t0 -ý 0 0 S- 0 = =-- " - , 4 0,+

>< .1,1 * 4 - CD L.)04-) LM - () V) V C %4-I=- -
U.1. a 'a -0 r_ C43.- -

U) VC 01

0 = a 0a

4-J + >-- - - -

a) Ln o3 +(.

I~(I X * a

4-3 4J a4a, < .. C m a,
ot(ato o V) a, %-4-
C0X _u 40 .4- a,....

-- 1- v 0 C - - 4-)

0"3 in) 0
a) a, *3 . 4-) -

7-- $-to

E -> + ~4-) r--0

0 L(n 4- m m u4-Ca

LI..LL .. i-LL L -

>- Li. LL- .

5D 0 0 0) 0

46

APPENDIX B

GIRL MNEMONICS CARDS
A. Retrieval (0,1,4,6,7,8,9,10) E. ýonpriso n (0,12)

0. Deletion (0.2) F. Conditional Transfer (0.13)
-"--•-:1- - - IFIS --

C. Insertion (0.3.4,5.6,7,8.9,.0) G. RandomNode/Link (14)
F~Tn* a p

D. Identification (0,11) H. Suffix Sequences (0.16)
--- 'Tq(;• r+,D ,'Eo)F+G,H-I)

NOTES

0. X is a prefix string. 9. Index I is a positive or negative integer-valked
co-n-sTant, variable, "expression", "statement",1. Retrieval A+B means: find top of sink node list linked index request :o.

tosurenode A by link S.. eto n s e nod d t s link ed B. A 10. Sink Node Content v is an identifier, '/inte'er/
2. Deletion A- means: delete slb node lint linked to A WHollerith i/no-ut Hollerith',

S"arithmetic expression or statement"
3. Insertion A 8 C means: connect A by B to C. 11. A'NAMEY means: give name NAMEY to node A.

4. Indication/!nclusion a is null or Indicates list item 1' AwNAMEY means: do A and NAMEY refer to same nsle
index (n c or requests (:v) Index of e if % ',
on list. 93"A"r . o to i'abel if preceding nper~tio;:"fa, t o S. P, may be ,:' I In

S. Indication/Inclusion a is a or an index inquiry which case control passos to •,veedir:i s, :: il
:p n - . c 1. the null operation.

6. Destruction n Is null (or +) or - (to delete the 14. S means: generate a random address.
succeeding indexed it). 15. The string means: X+B; X C D; X E F+G; X E h-

7. Inde t is null (to allow any type) or:
2x (Qdenttifter)

(;1)/ / ol lerith)
(1)7'il(nxnber)

8. Direction i is null or + (either of which searches up)
or :-a'aches dan).

A. ne, i' rI (0,1,4.7.H,9J0) -1. (

n. Deletion (0,2) f. Conditional Transfer (0,13)
--- T _-_ -- xi7t

C. Insertion (0,3,4,S,6.7,R,g,l0) G. Random Node/Link (14)

0. Identification (0,11) H. Suffix Snuences (0,15)
-- U -AMEY - X+,D,)F+G.H-I)

NOTES

0. X is a prefix string. 9. Index I is a positive or negative inteoer-valued
co-nstant, variable, "expression", "statement',

1. Retrieval Af8 means: find top of sink node list linked index request :v.to source node A by linkS8.to srelt o de A- bs dleink ne l10. Sink Node Content r is an identifier, '/integer/
2. Deletion A- eans: delete sink node list linked to A Hollerith', '/nn-quote Hollerith,

y B "arithmetic expression or statement"

3. Insertion A 8 C means: connect A by 6 to C. 11. A'NAMEY means: give name NAMEY to node A.
4. Indication/Inclusion . is null or indicates list item 12. A-NAMEY means: do A and NA14EY refer to same node?

index (n rl)or requests (:x) index of x if p is
on list. 13. /F/S means: go to label F if preceding operation

fails; otherwise to S. F or /S may be null In
5. Indication/Inclusion e is a or an index inquiry which case control passes to succeeding string in

:o n • . 1. the null operation.

6. Destruction n is null (or +) or - (to delete the 14. $ means: generate a random address.
su ndexed item). 15. The string means: X+B; X C D; X E F+G; X E H-I.

7. 1Indext e n is null (to allow any type) or:
(identifier)

Ii) / (Hollerith)
III) . (number)

8. Direction e is null or + (either of which searches up)
or - searches down).

A. Retrieval (0,1,4,6,7,8,9,10) E. Comparison (0,12)

B. Deletion (0,2) F. Conditional Transfer (0,13)
T B X/F/S

C. Insertion (0,3,4,5,6,7,8.9,10) G. Random Node/Link (14)

D. Identification (0,11) H. Suffix Sequences (0,15)
*X'NAMEY 1B,),H-I)

NOTES
0. X is a prefix string. 9. Index I is a positive or negative integer-valued

constant, variable, 'expression", 'statement',
I. Retrieval A+B means: find top of sink node list linked index request :p.

to source node A by link B.

2. Deletion A-6 means: delete sink node list linked to A 10. Sink Node Content x is an identifier, '/Integer/Fy T -. THolle~rithr', //no -quote Hollerith' ,
"arithmetic expression or statement'

3. Insertion A B C means: connect A by B to C. 11. ANAMEY means: give name NAMEY to node A.
4. Ind eationluston a is null or indicates list item 12. A-NAMEY means: do A and NANEY refer to samn node?

Ti--ex 1n • I)or requests (:p) index of 0 if p Is
on list. 13. /F/S means: gc to label F if preceding operation

fails; otherwise to S. F or /S may be null In
5. Indication Inclusion a in a or an index inquiry which case control passes to succeeding string in

:pn s " . the null operation.
6. Destruction n is null (or +) or - (to delete the 14. $ means: generate a random address.

succeeUngindexed item).
7. 1 is null (to allow any type) or: 15. The string means: X+B; X C D; X E F+G; X E i-I.

S-(identifier)
II) i/ (inllerlth)
iii) . (number)

8. Direction c is null or + (either of which searches up)
or - Searches dawO).

47

GIRL

GRAPH INFORMATI0N RETRIEVAL LANGAGE

FOR THE CDC 6400/6600/6700

Naval Ship Research and Development Center

Pattern Recoqnition Research Group

Code 1834

Bethesda, Maryland 20034

GIRL

GRAPH INFORMATION RETRIEVAL LANGUAGE

FOR THE COC 6400/6600/6700

Naval Ship Research and Development Center

Pattern Recognition Research Group

Code 1834

Bethesda, Maryland 20034

GIRL

GRAPH INFORMATION RETRIEVAL LANGUAGE

FOR THE CDC 6400/6600/6700

Naval Ship Research and Development Center

Pattern Recognition Research Group

Code 1834

Bethesda, Maryland 20034

48

APPENDIX C

PARENTHESIZED STATEMENT BNF SYNTAX

par unpari s

unpari unpar id

usemp usuff femp
s (sa) Iw
sa sa, sa I ti WI ti usuff

w :id ti wpa I + wpb Ibo wpc I wpd

wpa (sb) Iwa

sb ::sb, sb I ti wa Iti pmnix ti cu

cu dseq id ti usemp Idseq data ti
wa pmn wpe I -wpf Icp
cp dseq id ti s dseq data ti weq

.wpe (sc) I wb
sc SC, SC wb I C cu cu C

C pm ixtyp

ca ivc ti I :obj ti
wb : .wpflIcp

wpf (sd) I WC
sd sd, sd I wc C c cacu

wc pmn wpg I ixtypn wph'f wd
wd :ivc ti upi I:wpj

wpg (se) Iwe

se se, se I we ixtyp ca cu

we ixtypn wpk I wd

wph (Sf) I wf
sf sf, sf I wf I pm ca cu
wf pmn wpk I wd

wpi (sq) I- cr,

sq sq, sqlI ti Cp cu cu

49

wpj (sh) I wg
sh sh, sh I wg Iobj ti cu

wg obj ti wpi

wpk (si) I wd

si si, Si wd ca cu

weq : (seq) Iwea
seq seq, seq Iti wea
weqe weq I emp
wea eqn web I 'wec
web (seb) I divc ti weqe

seb seb, set) I divc ti weqe

wec (sec) I idf ti weqe

sec sec, sec jidf ti weqe

wpb (sj) I id ti wpl

sj sj, Sj I id ti wpl id ti cbu

cbu pm ixn ti usemp obj ti

wpl (sk) I wh
sk :sk, sk tiwA ti cbu

wh lmnnwpm kpn wpo

wpm (si) I w*~
si S1, si wpn Iixn ti usemp

wpn (sin) Iwi

sin sin, sin wi Ic ca useinp

wi pinn wpp Iixtypn wpq Icbp
cbp ivc ti s wpr

wpo (sn) I obj ti weq

Sn sn, sn obj ti weq Iobj ti

WPP (so) I wi

0so, so I wj ixtyp ca useinp0
wj ixtypn wpc Icbp

wpq :=(sp) I wk
0so sp, sp wkA I pm ca usemp

Ak : pmn wps'l cbp

wpr :=(sq) I obj ti s
sq .sq, sq Iobjti s objti usemp

wps :=(sr) Icbp
sr :=sr, sr I cbp I ivc ti usemp I:obj ti usemp

wpc ::(ss) I id ti s
ss ss, ss I id ti usemp

wpd (st) I idf ti s
st st, st f df'ti usemp

51

INITIAL DISTRIBUTION

Copies Copies

1 DODCI 5 NAVPGSCOL
T. Braithwaite 1 M. Woods

1 ARPA 1 D. Williams
L. Roberts 1 G. Barksdale

I C. Comstock
2 U.S. Army Picatinny 1 NAVWARCOL

Arsenal
1 R. Isakower 1 USNROTC & NAVADMINU, MIT

I U.S. Army Frankfort 1 NAVCOSSACT
Arsenal

D. Frederick 1 ADPESO

1 USAMERDC 1 CGMCDEC
J. Marburger 1 ONR Boston

4 CNO 1 ONR Chicago
1 OP 916 R. Buchal
1 OP 916C1, LCDR Poteat 1 ONR Pasadena
1 OP 916D R Lau
1 OP 098TD, L. Aarons R. Lau

1 CMC 5 NRL
1 5030, S. Wilson

6 CHONR 1 5400, B. Wald
1 400R, R. Ryan 1 7810, A. Bligh
1 430, R. Lundegard 1 8050, CDR Tatro
1 432, L. Brami
1 437, M. Denicoff 1 COMNAVINT
1 437, G. Goldstein 1 NAVELECSYSCOM

1 DNL 7 NAVSHIPSYSCOM

8 CHNAVMAT 1 SHIPS 03, RADM Andrews
1 MAT 0141E, R. Jeske 1 SHIPS 0311, B. Orleans
1 MAT 03 1 SHIPS 03414, A. Chaikin
1 MAT 03A, CDR Booth 1 SHIPS 03423, C. Pohler1 MAT 03L, J. Lawson 1 SHIPS 0719, L. Rosenthal
1 MAT 03L4, J. Huth 1 SHIPS 08, Nuclear Power

1 MAT 03P2, P. Newton Directorate
1 MAT 03P21, S. Atchison 3 NAVAIRSYSCOM

4 USNA 1 NAVAIR 5033, R. Saenger
1 D. Rogers 1 NAVAIR 5333F4, R. Entner
1 A. Adams 1 NAVAIR 5375A, J. Polgren
1 Dept of Math 1 NAVFACENGCOM

052

Copies Copies

1 NAVORDSYSCOM 6 MIT
1 NAVAIRDEVCEN 1 Professor M. Minsky1 Professor T. Winograd

1 CIVENGRLAB 1 Professor P. Winston

10 NELC 1 Dr. A. Nevins

3 5000, A. Beutel 1 D. McDermott

3 5200, M. Lamendola 1 G. Sussman

3 5300, J. Dodds 1 MIT Lincoln Laboratory

1 NAVUSEACEN R. Rovner

1 NAVWPNSCEN 1 Ohio State University

L. Diesen Professor L. White

1 NAVCOASTSYSLAB 1 Southern Methodist University
Professor R. Korfhage

2 HOL 2 Stanford University
I H. Stevens 1 Professor J. McCarthy

6 NWL 1 Professor J. Feldman
1 Code K UCLA1 Code K-il UL1 Code KO Professor M. Melkanoff

1 Code KP 1 University of Florida
1 Code KPS Professor J. Tou

8 NAVSEC 1 Hughes Research Laboratory
3 SEC 6102C, P. Bono B. Bullock
1 SEC 6114,*R. Johnson
1 SEC 6114E, A. Fuller IBM Federal Systems Division
1 SEC 6178D03, L. Biscomb J. Sammet

I AFOSR 2 IBM Watson Research Laboratory

Code 423 Yorktown Heights, New York
1 G. F. Codd

1 Rome Air Development Center 1 C. H. Thompson

1 WPAFB AFFDL 2 Stanford Research Institute

12 DDC 1 Dr. C. Rosen1 Dr. B. Raphael
1 NASA Langley Research Center 1D.B ahe

R. Fulton 1 Systems Development Corporation
Santa Monica, California

1 Carnegie-Mellon University E. Book
Professor A. Newell 1 Xerox Research Laboratories

1 College of William & Mary Palo Alto, California
Professor N. Gibbs Dr. D. Bobrow

0 53

CENTER DISTRIBUTION

Copies Code

1 18/1809
1 1802.1
1 1802.3
1 1802.4
2 1805
2 183
1 1832
1 1833

30 1834
1 1835
2 184
2 185
1 1858
2 186
1 1863
1 1867
2 188
2 189
2 1891, Central Depository

54

UNCLASSIFIED

S,'vrItv Ii i DOCUMENT CONTROL DATA - R & D

.. .t,•t t ý L,t itt,',It..... .. tI fie h-13-4 d-f I, I ~r t ... I•(hm dosxinv d .¢v itr• ! I~ t be t,re-d ývlh,,t t1-t --- atll -,.-rt i:,c ,l,.lq

OtI 006NAlI[NG AC "TI VI TY ((',)rpr(etlt i-rlhor) 2,a. HE PORT 5I.CURI TY CLA5 1S It- IA 710t4

Naval Ship Research and Development CenterI UNCLASSIFIED

Bethesda, Maryland 20034 2 1). GRO 0U P

3 RE-PORT TITLE

GRAPH INFORMATION RETRIEVAL LANGUAGE; PROGRAMMING MANUAL FOR FORTRAN COMPLEMENT

4 DESCRIPTIVE NOTES (Type otreport and inclusive dates)

5. AU THOR(S) (First name, middle initial, last name)

Sidney Berkowitz, Ph.D.

6. REPORT DATE 7a. TOTAL NO. OF PAGES 7b. NO. OF REFS

June 1973 57 0
80. CONTRACT OR GRANT NO. 9a. ORIGINATOR'5 REPORT NUMBER(S)

b. PROJECT NO. SR0140301 4137

c. 1-1834-001 9b. OTHER REPORT NO(SI (Any other n.imbers that may be assigned
this report)

d.

10. DISTRIBUTION STATEMENT

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

SHIPS 00311

13. ABSTRACT

GIRL (Graph Information Retrieval Language) is a programming language designed
to conveniently manipulate information in graph structures. As such, the language
will plan a key role in the construction of the organizational schemes found, for
example, in information retrieval, pattern recognition problems, linguistic
analysis, and process scheduling systems. The language is written to complement
an algebraic language, in the sense that GIRL statements are distinguished from
the statements of the algebraic language and the statements may be interleaved.
The primary advantage of separating symbolic and numeric statements is that the
programmer is afforded a linear, one-one trace of graph operations in the code
description.

0

DD NORV 14 7 3 (PAGE 1) UNCLASSIFIED
S/N 0101-807-6801 Security Classification

UNCLASSIFIED
Security Classification

14 LINK A LINK B LINK C

KEY WORDS

ROLE WT ROLE WT ROLE WT

Programming languages
Associative memory
Graphs
Lists

4

D D FORM••1473 (BACK) UNCLASSIFIED

(PAGE, 2) Security Classification

